
WekaDeeplearning4j: a Deep Learning Package for

Weka based on DeepLearning4j

Steven Langa, Felipe Bravo-Marquezb, Christopher Beckhamc, Mark Halld,
Eibe Franke

aTechnische Universität Darmstadt, Darmstadt Germany
bDepartment of Computer Science, University of Chile & IMFD, Santiago, Chile

cÉcole Polytechnique de Montréal, Montréal, Canada
dHitachi Vantara

eDepartment of Computer Science, University of Waikato, Hamilton, New Zealand

Abstract

Deep learning is a branch of machine learning that generates multi-layered
representations of data, commonly using artificial neural networks, and has
improved the state-of-the-art in various machine learning tasks (e.g., image
classification, object detection, speech recognition, and document classifica-
tion). However, most popular deep learning frameworks such as TensorFlow
and PyTorch require users to write code to apply deep learning. We present
WekaDeeplearning4j, a Weka package that makes deep learning accessible
through a graphical user interface (GUI). The package uses Deeplearning4j
as its backend, provides GPU support, and enables GUI-based training of
deep neural networks such as convolutional and recurrent neural networks.
It also provides pre-processing functionality for image and text data.

Keywords: Deep Learning, Weka

1. Introduction

We present WekaDeeplearning4j1, a tool for training and testing deep
learning models implemented in Deeplearning4j2 from within Weka [1], a
widely used open-source machine learning workbench implemented in Java.

1https://deeplearning.cms.waikato.ac.nz/
2https://deeplearning4j.org/

Preprint submitted to Knowledge-Based Systems April 30, 2019

https://deeplearning.cms.waikato.ac.nz/
https://deeplearning4j.org/


The main goal of our tool is to make deep learning accessible without requir-
ing users to write code—via Weka’s GUI. At the most basic level, the GUI
enables users to perform experiments using the following simple steps: 1)
loading data in the Attribute-Relation File Format (ARFF)3, 2) configuring
a neural network architecture, 3) choosing an experimental protocol, and 4)
running the experiment.

The WekaDeeplearning4j package supports fully connected feedforward
networks, convolutional networks, and recurrent networks. Data loaders for
standard tabular data, as well as image, text, and sequence data, are pro-
vided. It is also possible to train a neural network and use it as a feature
extractor to provide suitable input data for another learning algorithm im-
plemented in Weka, such as a support vector machine. Because the neural
network predictors in the package are standard Weka “classifier” objects,
they can be used and deployed in the same way as other types of predictive
models generated by learning algorithms in Weka.

2. Problems and Background

Recent years have seen many breakthroughs achieved with deep neural
networks, delivering state-of-the-art results in machine learning tasks such
as image and document classification. Companies make use of the latest
deep learning breakthroughs by benefiting from a quickly evolving software
environment comprising different deep learning frameworks. Major frame-
works are TensorFlow4, PyTorch [2], Deeplearning4j, CNTK [3] and Caffe
[4]. Among these frameworks, Deeplearning4j is the most suitable one for
integration with Weka [1] because it is also implemented in Java. It supports
well-known deep learning architectures such as convolutional neural networks
and recurrent neural networks, e.g., long short-term memory networks [5],
and training on graphics processing units.

Development of Deeplearning4j has focused on business applications: it
is primarily used as an API that enables programmatic integration of deep
learning into larger software systems. Our aim with its integration into Weka,
which is widely used for research, education and model development through
experimentation, is to expand its scope into these areas and provide GUI-
based user interaction.

3https://waikato.github.io/weka-wiki/arff_stable/
4https://www.tensorflow.org/

2

https://waikato.github.io/weka-wiki/arff_stable/
https://www.tensorflow.org/


3. Related Tools

Software such as Knime [6], Barista [7] and Expresso [8] that exposes deep
learning in a GUI use the Python libraries TensorFlow, Keras5 or Caffe as the
backend. The user has to manually set up Python using virtual environments
or Anaconda6 and may have to resolve dependencies of the corresponding
deep learning framework. In contrast, our package enables straightforward
installation through Weka’s GUI by using Java-based components.

4. Software Framework

WekaDeeplearning4j is built as a Weka package and thus makes Deeplearn-
ing4j models available in the whole Weka environment. The core models
available in the package are: 1) Dl4jMlpClassifier, which enables creation
of arbitrarily deep feedforward neural networks, including convolutional neu-
ral networks, and 2) RnnSequenceClassifier, which allows training recur-
rent neural networks on sequential data such as documents. An appealing
feature of our tool, described in Section 4.2, is the support for processing two
of the most popular data types in deep learning: images and text.

4.1. Network Configuration

The configuration of the Dl4jMlpClassifier in the Weka GUI is shown
in Figure 1a. The main configuration window exposes a set of basic param-
eters, such as the number of epochs to train the network, the iterator used
to load data (image, textual, tabular or sequence data), an early stopping
scheme, and the layer architecture. Fine tuning of configurations can be per-
formed in the network configuration window (not shown here). Through
this window it is possible to additionally specify network hyper parameters
such as the optimization algorithm, the optimization strategy (updater), reg-
ularization factors, initialization methods and more. These configurations are
globally applied for each layer that is listed in layer specification.

The layer specification option in the basic model setup window en-
ables the user to create network architectures by stacking different types of
neural network layers on top of one another. It is also possible to load a
predefined model architecture from the zooModel option, which can then be

5https://github.com/fchollet/keras
6https://anaconda.com/

3

https://github.com/fchollet/keras
https://anaconda.com/


(a) (b)

Figure 1: Configuration of the Dl4jMlpClassifier model. Figure 1a is the main model
configuration window that is shown in the Weka GUI when selecting Dl4jMlpClassifier.
From here, further nested configurations can be reached, such as the ConvolutionLayer

setup shown in Figure 1b and more.

further customized through the layer specification. Each element in the layer
list can be chosen from the list of available layers and configured with layer
specific options. Figure 1b shows the configuration of a ConvolutionLayer,
giving options for kernel size, stride, padding and more.

The Dl4jMlpClassifier can be used for both regression and classifica-
tion by choosing appropriate loss functions. Additionally, once a classifier has
been trained, it is possible to use the serialized Dl4jMlpClassifier in the
Dl4jMlpFilter preprocessing tool for feature extraction (not shown here).

4.2. Data Loading

The package provides so called InstanceIterators to load a given dataset
in the correct shape. Each iterator enables setting a batch size that deter-
mines the size of the mini batches used for training a network.

4.2.1. Image Data

To perform image classification with the package, a dataset must be rep-
resented as an ARFF file with one string attribute whose values contain the

4



paths of the image files and another attribute with the corresponding target
class values. This file can be loaded as the base dataset in the Weka GUI.

To process this data with deep learning, the instance iterator in Fig-
ure 1a has to be set to ImageInstanceIterator. This iterator additionally
specifies the image base directory, the image height and width, and the num-
ber of image channels.

4.2.2. Text Data

In deep learning settings, textual data instances (e.g., documents or sen-
tences) are generally represented as sequences of discrete tokens (e.g., words
or characters), where each unique token is mapped into a dense vector re-
ferred to as an “embedding” [9, 10].

The RnnTextEmbeddingInstanceIterator accepts datasets that contain
text data and maps each document into an embedding space, based on
word embeddings provided by a lookup table through the location of word

vectors option. This iterator can be used with the RnnSequenceClassifier
for sequence classification and regression.

Word embeddings can also be generated from the input data with the
Dl4jStringToWord2Vec and Dl4jStringToGlove filters that implement the
Word2Vec [10] and Glove [9] models respectively.

5. Conclusions

We have presented an extension to Weka that enables users to create,
train, and test deep neural networks using Weka’s GUI, employing Deeplearn-
ing4j as the backend. It is targeted at researchers and data science practition-
ers who want to experiment with deep learning, opening it up to users who
prefer GUI-based interaction and want to minimize opportunity cost associ-
ated with the setup of software. The extension also allows the incorporation
of deep learning models into users’ existing Weka workflows.

From a research perspective, our tool provides a unified environment for
comparing deep learning models against other machine learning techniques.
It also enables application of deep learning in conjunction with many of the
“meta” learning schemes implemented in Weka, e.g., cost-sensitive learning,
conditional density estimation, and ordinal classification, which opens up
opportunities for new research and applications.

5



Acknowledgements

This work was supported by project 15-UOW-094 of the Marsden Fund
of New Zealand. Felipe Bravo-Marquez’s work on the text mining aspects of
the package was funded by Millennium Institute for Foundational Research
on Data.

References

[1] E. Frank, M. A. Hall, I. H. Witten, The WEKA workbench, Online Ap-
pendix for ”Data Mining: Practical Machine Learning Tools and Tech-
niques”, Morgan Kaufmann, Fourth Edition (2016).

[2] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in Py-
Torch, NIPS Autodiff Workshop, Long Beach, CA, USA (2017).

[3] F. Seide, A. Agarwal, CNTK: Microsoft’s open-source deep-learning
toolkit, in: Proc 22nd Int Conf on Knowledge Discovery and Data Min-
ing, ACM, New York, NY, USA, 2016, p. 2135.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast
feature embedding, in: Proc 22nd Int Conf on Multimedia, ACM, New
York, NY, USA, 2014, pp. 675–678.

[5] J. Schmidhuber, Deep learning in neural networks: An overview, Neural
networks 61 (2015) 85–117.

[6] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,
P. Ohl, C. Sieb, K. Thiel, B. Wiswedel, KNIME: The Konstanz Infor-
mation Miner, in: Data Analysis, Machine Learning and Applications,
Springer, 2008, pp. 319–326.

[7] S. Klemm, A. Scherzinger, D. Drees, X. Jiang, Barista - a graphical
tool for designing and training deep neural networks (2018). arXiv:

1802.04626.

[8] J. H. Dholakiya, R. K. Sarvadevabhatla, R. V. Babu, Expresso: A user-
friendly GUI for designing, training and using convolutional neural net-
works (2015). arXiv:1505.06605.

6

http://arxiv.org/abs/1802.04626
http://arxiv.org/abs/1802.04626
http://arxiv.org/abs/1505.06605


[9] J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word
representation, in: Proc 19th Conf on Empirical Methods in Natural
Language Processing, ACL, 2014, pp. 1532–1543.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, in:
Neural Information Processing Systems 26, 2013, pp. 3111–3119.

7



Required Metadata

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version 1.5.11
S2 Permanent link to executables of

this version
https://github.com/Waikato/

wekaDeeplearning4j/tree/v1.5.

11

S3 Legal Software License GPLv3
S4 Computing platform/Operating

System
Linux, OS X, Microsoft Windows

S5 Installation requirements & depen-
dencies

Java 8 or higher, Weka 3.8.1 or
higher

S6 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

https://deeplearning.cms.

waikato.ac.nz/

S7 Support email for questions wekalist@list.scms.waikato.

ac.nz

Table 1: Software metadata

Nr. Code metadata description Please fill in this column
C1 Current code version 1.5.11
C2 Permanent link to code/repository

used of this code version
https://github.com/Waikato/

wekaDeeplearning4j

C3 Legal Code License GPLv3
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Java 8, Gradle, Weka

C6 Compilation requirements, operat-
ing environments & dependencies

JDK 8 or higher, Weka 3.8.1 or
higher

C7 If available Link to developer docu-
mentation/manual

https://waikato.github.

io/wekaDeeplearning4j/

overview-summary.html

C8 Support email for questions wekalist@list.scms.waikato.

ac.nz

Table 2: Code metadata

8

https://github.com/Waikato/wekaDeeplearning4j/tree/v1.5.11
https://github.com/Waikato/wekaDeeplearning4j/tree/v1.5.11
https://github.com/Waikato/wekaDeeplearning4j/tree/v1.5.11
https://deeplearning.cms.waikato.ac.nz/
https://deeplearning.cms.waikato.ac.nz/
wekalist@list.scms.waikato.ac.nz
wekalist@list.scms.waikato.ac.nz
https://github.com/Waikato/wekaDeeplearning4j
https://github.com/Waikato/wekaDeeplearning4j
https://waikato.github.io/wekaDeeplearning4j/overview-summary.html
https://waikato.github.io/wekaDeeplearning4j/overview-summary.html
https://waikato.github.io/wekaDeeplearning4j/overview-summary.html
wekalist@list.scms.waikato.ac.nz
wekalist@list.scms.waikato.ac.nz

	Introduction
	Problems and Background
	Related Tools
	Software Framework 
	Network Configuration
	Data Loading
	Image Data
	Text Data


	Conclusions

