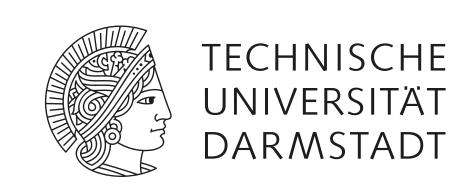
Autoencoding Probabilistic Circuits



Steven Braun¹ Sahil Sidheekh⁵
Antonio Vergari⁶ Sriraam Natarajan⁵
Martin Mundt⁷ Kristian Kersting^{1,2,3,4}

⁵U Darmstadt ²hessian.Al ³DFKI ⁴Centre for Cog. Science, TU Darmstadt ⁵Univ. of Texas ⁶Univ. of Edinburgh ⁷ Univ. of Bremen

Research Question

Can we marry **tractable inference** of probabilistic circuits (PCs) and the modeling capacity of neural networks (NNs) for **representation learning**?

Tractable Repr. Learning

Autoencoding Probabilistic Circuits (APCs) are hybrid autoencoders with a PC encoder and a NN decoder, trained end-to-end. PC models the joint distribution $p_{\mathcal{C}}(\mathbf{X}, \mathbf{Z})$, NN models the decoding function $p_{\theta}(\mathbf{X} \mid \mathbf{Z})$.

Encode: $\mathbf{z} \sim p_{\mathcal{C}}(\mathbf{Z} \mid \mathbf{X})$

Decode: $\mathbf{x} \sim p_{\theta}(\mathbf{X} \mid \mathbf{Z})$

End-to-End Training

- Enabled by diff. PC sampling with SIMPLE.
- Loss combines three objectives: $\mathcal{L} = \lambda_{\mathrm{REC}} \mathcal{L}_{\mathrm{REC}} + \lambda_{\mathrm{KLD}} \mathcal{L}_{\mathrm{KLD}} + \lambda_{\mathrm{NLL}} \mathcal{L}_{\mathrm{NLL}}$
- Reconstruction: Ensures embeddings z capture enough information for p_{θ} to reconstruct input x

$$\mathcal{L}_{\text{REC}} = -\frac{1}{B} \sum_{i=1}^{B} \log p_{\theta}(\mathbf{x}_i \mid \mathbf{z}_i)$$

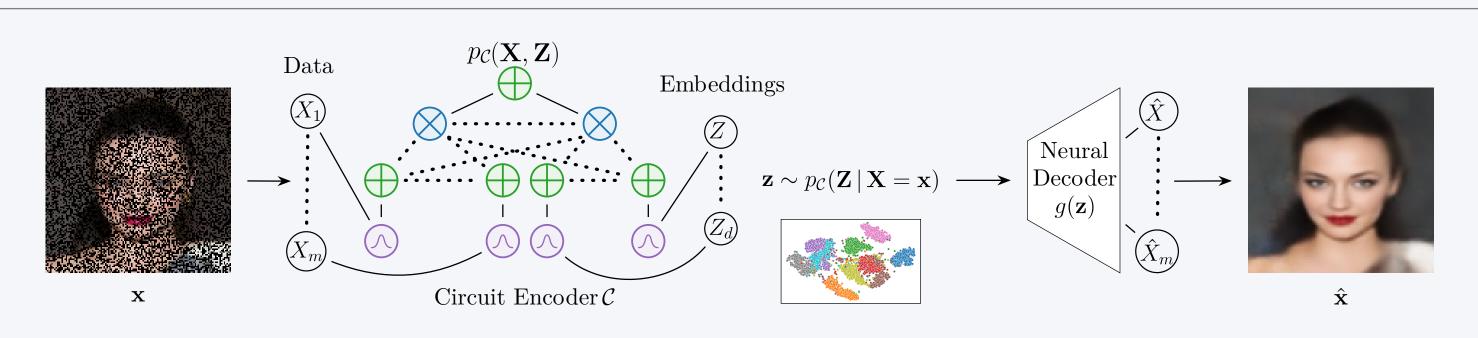
• Embedding Regularization: Forces the learned embedding distribution to match a simple prior q (e.g., Gaussian) using the KL divergence

$$\mathcal{L}_{\mathrm{KLD}} = \sum_{i=1}^{B} \mathrm{KLD}(p_{\mathcal{C}'}(\mathbf{Z} \mid \mathbf{x}_i) \parallel q(\mathbf{Z}))$$

• Likelihood Regularization: Regularizes the encoder to conform to the joint probability of data and embeddings

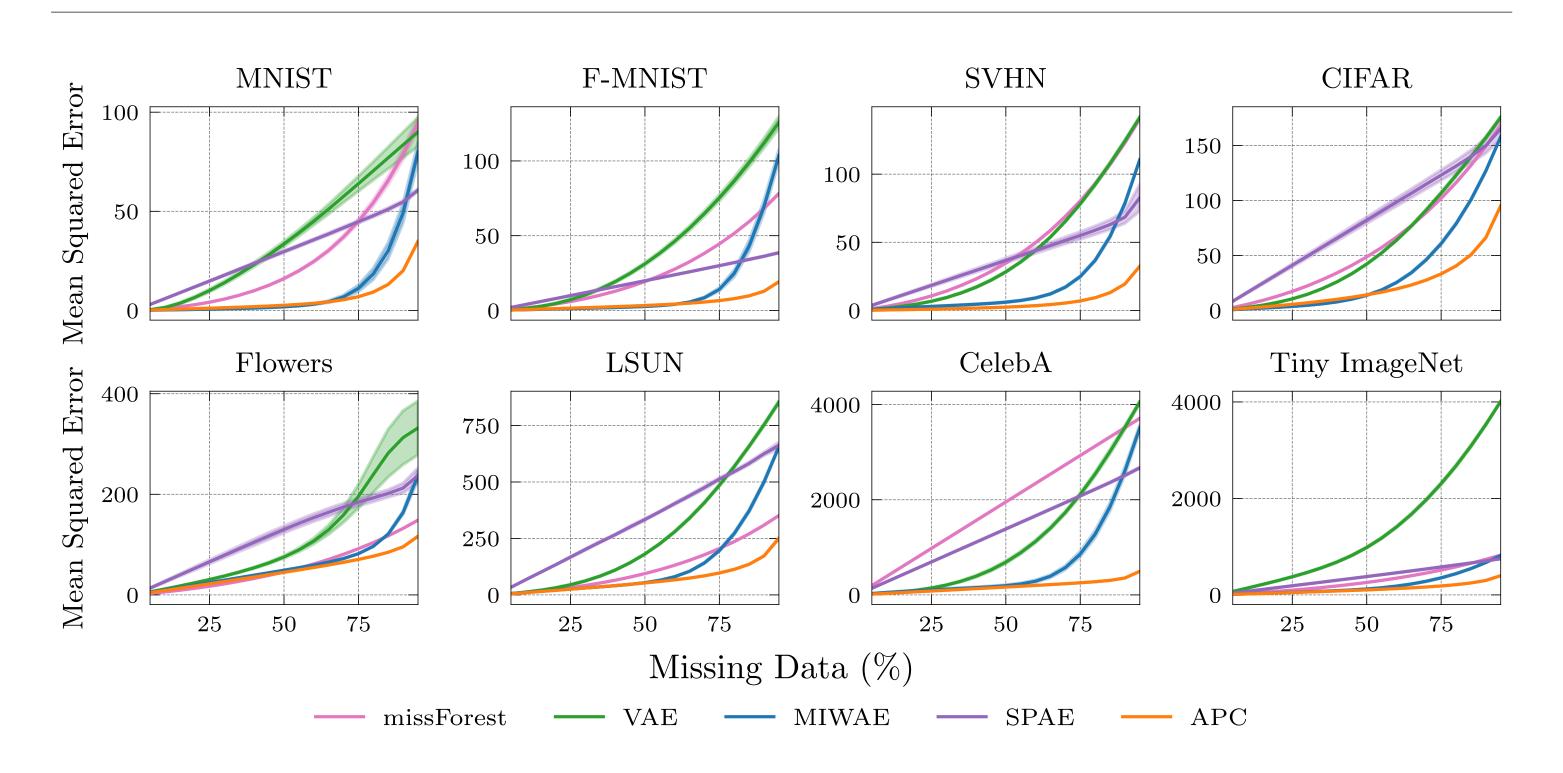
$$\mathcal{L}_{ ext{NLL}} = -rac{1}{B} \sum_{i=1}^{B} \log p_{\mathcal{C}}(\mathbf{x}_i, \mathbf{z}_i)$$

Bridging Tractable Enc. and Neural Dec.



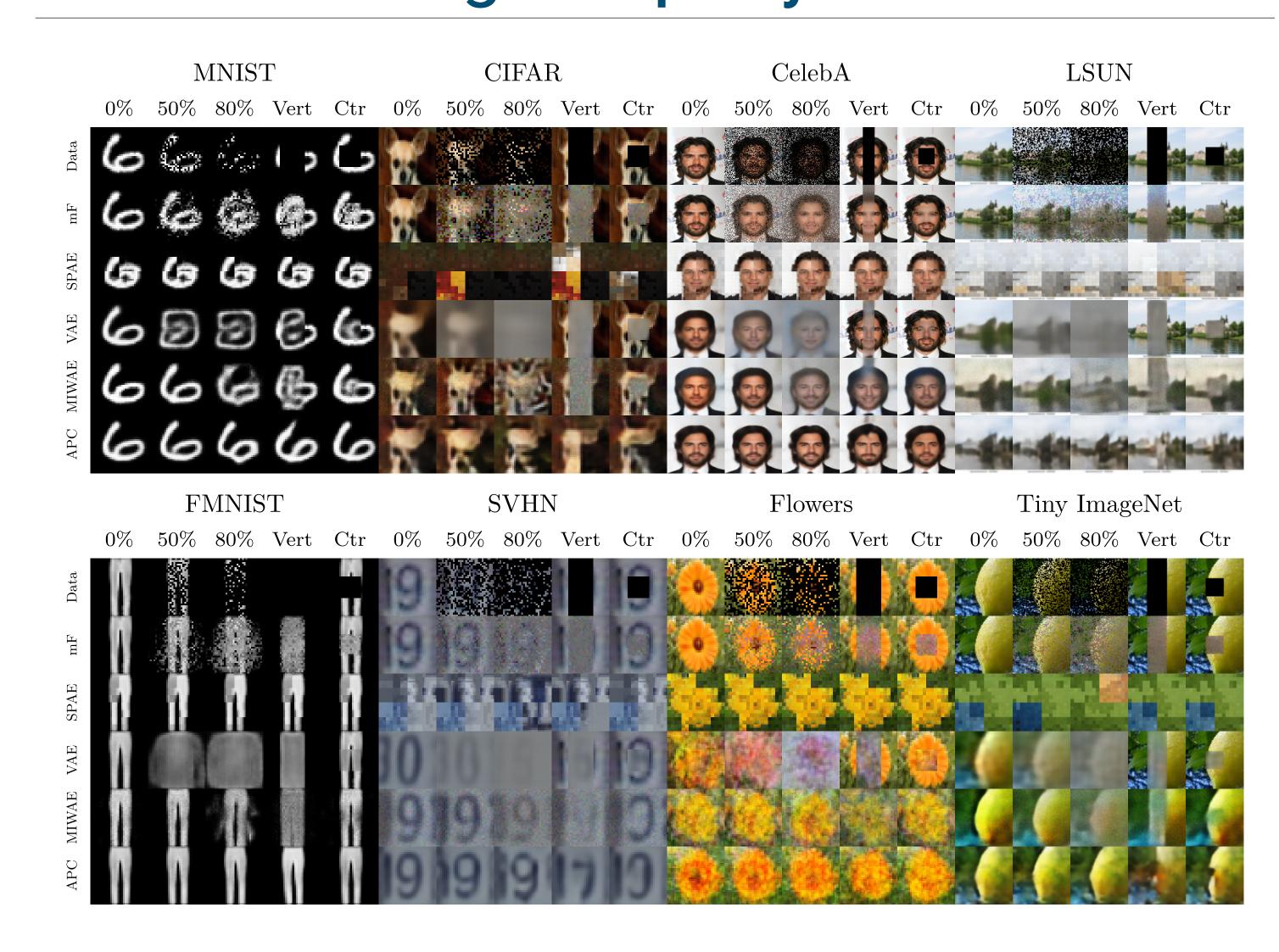
APCs combine tractable probabilistic encoder and flexible high capacity neural decoder

Reconstruction Performance



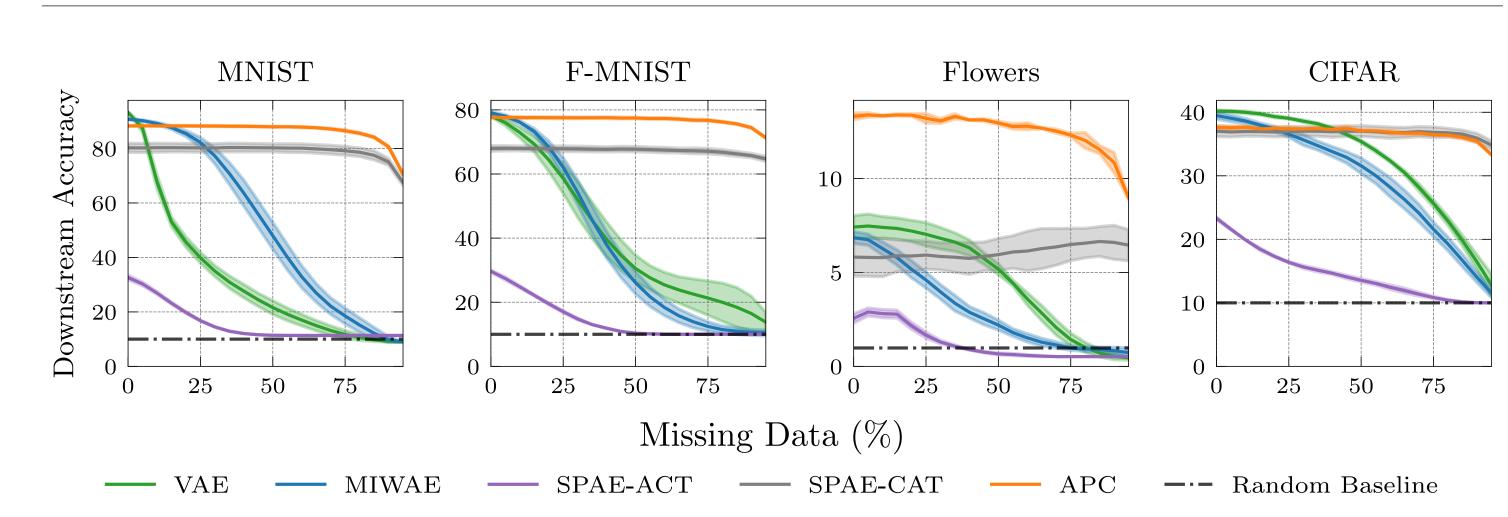
APCs maintain lowest reconstruction error even under high missing data rates, while neural autoencoders quickly degrade.

Reconstr. Missing (Completly) At Random Data



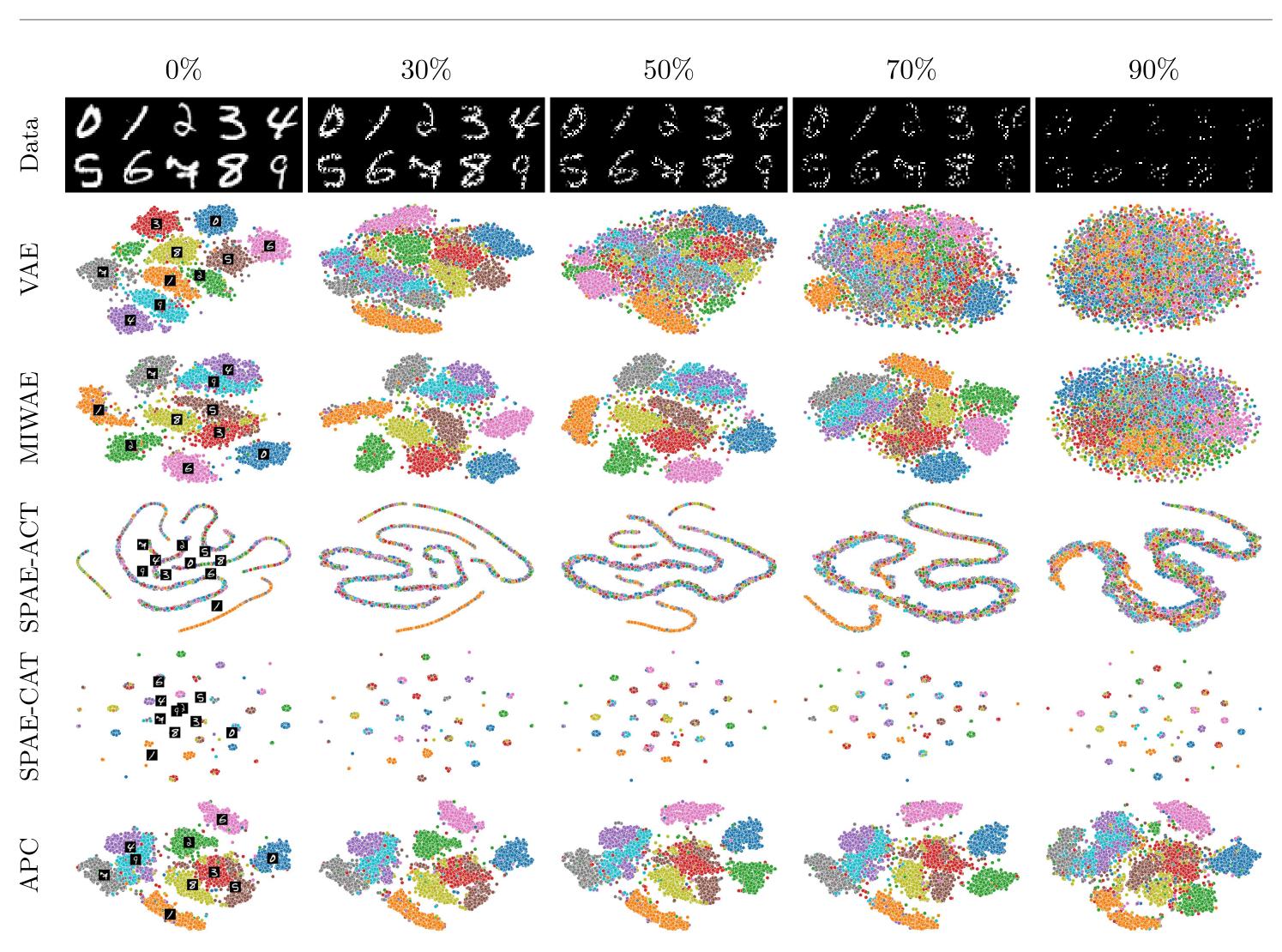
→ APCs can tractably marginalize over missing inputs

Downstream Accuracy



APCs retain downstream accuracy (logistic regression) on MCAR data, while neural encoder lose separability and performance as missing data ratio increases.

Latent Structure w. MCAR Data



APCs maintain stable embeddings across missing data corruption, whereas neural encoders degrade rapidly.