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What is Knowledge Distillation?
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"Hinton, G.E., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network. ArXiv, abs/1503.02531.
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< What if we don't have access to the original training data 2 = {(x,,y,)}?
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Extracting Knowledge
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Extracting Knowledge
e Naive: Init. random datapoints (&, §) and minimize £(&,j) = CE(f* (Z),9)
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Extracting Knowledge
e Generative: Init. random latents (2, %) and minimize £(g,(%),5) = CE(f* (9,(%)), %)
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Extracting Knowledge
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What's missing?
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Extracting Knowledge
e Generative: Init. random latents (2, %) and minimize £(g,(%),5) = CE(f* (9,(%)), %)
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Naive: Keep classes close, else boundary becomes linear

What's missing? ) . .
: Generative: Disperse samples along the relevant boundary region
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CAKE: Contrastive Abductive Knowledge Extraction

Idea: Contrast sample pairs noisily across and along the relevant
teacher decision boundary and regularize with data priors!
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CAKE: Contrastive Abductive Knowledge Extraction

Idea: Contrast sample pairs noisily across and along the relevant
teacher decision boundary and regularize with data priors!

e Contrastive samples between classes

£Contr( ) = ]1[% # yg] | (x;) — fT( J)||% ... or any other contrastive loss

e Regularize using domain knowledge

Srv(@ ZHw] BTy 1k|| + ”wﬂk a wj,k_l” ... or any other data prior

e Noisily dlsperse samples along the boundary
Explicit:  Langevin Dynamics z!™' = x! + V_£(x})n(t) + /2n(t)et | with et ~ N (0, 1)

Implicit:  Stochasticity of SGD and step size schedules 7(t¢) is enough
... or any other noise injection



Extracting Knowledge
e CAKE: Contrast pairs noisily across and along the relevant teacher decision boundary.
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Extracting Knowledge
e CAKE: Contrast pairs noisily across and along the relevant teacher decision boundary.
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Extracting Knowledge
e CAKE: Contrast pairs noisily across and along the relevant teacher decision boundary.
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CAKE Lifts Knowledge Distillation Restrictions

e No original data access

e No model access
e.g. intermediate activations
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e No model assumptions
e.g. BatchNorm, linear penultimate layer

np=0,0=1

< CAKE can be applied to any “blackbox” model which is differentiable w.r.t. its input.



CAKE Across Model Types
Distilling MNIST from model type A to model type B
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CAKE Across Model Types
Distilling MNIST from model type A to model type B
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Takeaways: 1. Similar inductive bias — better distillation
2. Less inductive bias — better distillation 3. ResNet is a safe student model choice.
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CAKE Across Scales

Distilling CIFAR-10 knowledge from ResNet-X to ResNet-Y (152, 101, 50, 34, 18, 4)
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CAKE Across Scales

Distilling CIFAR-10 knowledge from ResNet-X to ResNet-Y (152, 101, 50, 34, 18, 4)
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Takeaway: CAKE can compress models at a stable accuracy until
capacity is too heavily constrained.




CAKE Synthetic Samples

MNIST SVHN CIFAR

No visual resemblance with original training data.
Possible future work includes:

e Differential privacy?
e Data utility and privacy trade-offs?

e Robustness against adversarial attacks?
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Summary and Outlook

CAKE is a data-free and model-agnostic knowledge distillation method, that ...
e can distill models across scales
e can distill between different model types

e doesn’t produce data-like samples (visually)



Summary and Outlook

CAKE is a data-free and model-agnostic knowledge distillation method, that ...

e can distill models across scales
e can distill between different model types

e doesn’t produce data-like samples (visually)

Future work
e Estimate gradients? — truly “blackbox”, API-model possible
e Investigate the data privacy perspective?

e Investigate explicit instead of implicit noise



Still interested?

Join me at Room 2, Poster #117

Code
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