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Overview

Problem: Probabilistic Circuits (PCs) are overconfident!
Solution: Tractable Dropout Inference (TDI)

¢ Provides model uncertainty quantification for PCs,
enhancing robustness to perturbations, corruptions,
and OOD data, all in an efficient, single forward pass.

e Enables integration of prior knowledge about epis-
temic and aleatoric uncertainty and the potential for
incorporating uncertainty directly into training.

Research Questions: Are PCs overconfident? Is TDI a
valuable model uncertainty quantification method that
makes PCs more robust?

Probabilistic Circuits

Martin Mundt *

4Centre for Cognitive Science, TU Darmstadt

Fabrizio Ventola™*  Steven Braun™* Kristian Kersting =34

Dep. of CS, TU Darmstadt

Zhongjie Yu?

hessian. Al 3DFK]

Challenge: Probabilistic Circuits are Overconfident!
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just like other (generative) models,
despite assumed calibrated.

Solution: Uncertainty via Tractable Dropout Inference
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2"d Scenario: Perturbed data
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MCD needs 100 evaluations,
TDI requires only a single pass!

Expressive probabilistic models, model joint distribu-
tions, enable exact, tractable inference for various
probabilistic queries.

© Sum Nodes: Convex combination of input nodes.
& Product Nodes: Product of input nodes.
() Leaf Nodes: Tractable, normalized PDFs/PMFs.
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Goal: Quantify model uncertainty to know what the model “does not know”.

Inspiration: Monte Carlo dropout (MCD) — uncertainty by multiple stochastic model evaluations.

TDI: Leverage PCs’ clear probabilistic semantics to provide a closed-form approximation to MCD in PCs.
Tractable Dropout Inference

1. View sum nodes as linear combinations of input RVs and dropout RVs: S = 3, ,w;P; , with §; ~ Bern(q).

2. Derive closed-form expr. of expectation, variance, and covariance for nodes as a function of their inputs.

0[S] = ¢ > wiE[N; U[P] = 11 E[N;]
Var[S] = ¢ w?(Var[Ny] 4+ pE[N;]") 4+ ¢* iz wsw;Cov[N;, N;] Var[P] = I1;(Var[N;] + E[N,°) — IT; E[N,]’
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3. Propagate exp., var., and cov. in a bottom-up pass from leaves to the root node.

Efficiency: TDI provides tractable uncertainty quantification in a single
forward pass.
Robustness:
1. detects OOD data and adequately balances ID vs. OOD accuracy
2. better detects distribution shifts while retaining accuracy
3. Is more robust against challenging image corruptions
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3'¥ Scenario: Corrupted data
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